Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Viruses ; 12(5)2020 04 30.
Article in English | MEDLINE | ID: covidwho-1726009

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which first occurred in Wuhan (China) in December of 2019, causes a severe acute respiratory illness with a high mortality rate, and has spread around the world. To gain an understanding of the evolution of the newly emerging SARS-CoV-2, we herein analyzed the codon usage pattern of SARS-CoV-2. For this purpose, we compared the codon usage of SARS-CoV-2 with that of other viruses belonging to the subfamily of Orthocoronavirinae. We found that SARS-CoV-2 has a high AU content that strongly influences its codon usage, which appears to be better adapted to the human host. We also studied the evolutionary pressures that influence the codon usage of five conserved coronavirus genes encoding the viral replicase, spike, envelope, membrane and nucleocapsid proteins. We found different patterns of both mutational bias and natural selection that affect the codon usage of these genes. Moreover, we show here that the two integral membrane proteins (matrix and envelope) tend to evolve slowly by accumulating nucleotide mutations on their corresponding genes. Conversely, genes encoding nucleocapsid (N), viral replicase and spike proteins (S), although they are regarded as are important targets for the development of vaccines and antiviral drugs, tend to evolve faster in comparison to the two genes mentioned above. Overall, our results suggest that the higher divergence observed for the latter three genes could represent a significant barrier in the development of antiviral therapeutics against SARS-CoV-2.


Subject(s)
Betacoronavirus/genetics , Codon , Coronavirus/genetics , Genome, Viral , Base Composition , Betacoronavirus/chemistry , Betacoronavirus/physiology , Biological Evolution , Coronavirus/classification , Genes, Viral , Host Specificity , Mutation , Phylogeny , SARS-CoV-2
2.
Biomolecules ; 11(6)2021 06 18.
Article in English | MEDLINE | ID: covidwho-1273388

ABSTRACT

The ongoing outbreak of coronavirus disease COVID-19 is significantly implicated by global heterogeneity in the genome organization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The causative agents of global heterogeneity in the whole genome of SARS-CoV-2 are not well characterized due to the lack of comparative study of a large enough sample size from around the globe to reduce the standard deviation to the acceptable margin of error. To better understand the SARS-CoV-2 genome architecture, we have performed a comprehensive analysis of codon usage bias of sixty (60) strains to get a snapshot of its global heterogeneity. Our study shows a relatively low codon usage bias in the SARS-CoV-2 viral genome globally, with nearly all the over-preferred codons' A.U. ended. We concluded that the SARS-CoV-2 genome is primarily shaped by mutation pressure; however, marginal selection pressure cannot be overlooked. Within the A/U rich virus genomes of SARS-CoV-2, the standard deviation in G.C. (42.91% ± 5.84%) and the GC3 value (30.14% ± 6.93%) points towards global heterogeneity of the virus. Several SARS-CoV-2 viral strains were originated from different viral lineages at the exact geographic location also supports this fact. Taking all together, these findings suggest that the general root ancestry of the global genomes are different with different genome's level adaptation to host. This research may provide new insights into the codon patterns, host adaptation, and global heterogeneity of SARS-CoV-2.


Subject(s)
COVID-19/virology , Codon Usage , Genome, Viral , SARS-CoV-2/genetics , Evolution, Molecular , Humans , Mutation , Phylogeny
3.
J Biomed Sci ; 27(1): 73, 2020 Jun 07.
Article in English | MEDLINE | ID: covidwho-548501

ABSTRACT

BACKGROUND: SARS-CoV-2 began spreading in December 2019 and has since become a pandemic that has impacted many aspects of human society. Several issues concerning the origin, time of introduction to humans, evolutionary patterns, and underlying force driving the SARS-CoV-2 outbreak remain unclear. METHOD: Genetic variation in 137 SARS-CoV-2 genomes and related coronaviruses as of 2/23/2020 was analyzed. RESULT: After correcting for mutational bias, the excess of low frequency mutations on both synonymous and nonsynonymous sites was revealed which is consistent with the recent outbreak of the virus. In contrast to adaptive evolution previously reported for SARS-CoV during its brief epidemic in 2003, our analysis of SARS-CoV-2 genomes shows signs of relaxation. The sequence similarity in the spike receptor binding domain between SARS-CoV-2 and a sequence from pangolin is probably due to an ancient intergenomic introgression that occurred approximately 40 years ago. The current outbreak of SARS-CoV-2 was estimated to have originated on 12/11/2019 (95% HPD 11/13/2019-12/23/2019). The effective population size of the virus showed an approximately 20-fold increase from the onset of the outbreak to the lockdown of Wuhan (1/23/2020) and ceased to increase afterwards, demonstrating the effectiveness of social distancing in preventing its spread. Two mutations, 84S in orf8 protein and 251 V in orf3 protein, occurred coincidentally with human intervention. The former first appeared on 1/5/2020 and plateaued around 1/23/2020. The latter rapidly increased in frequency after 1/23/2020. Thus, the roles of these mutations on infectivity need to be elucidated. Genetic diversity of SARS-CoV-2 collected from China is two times higher than those derived from the rest of the world. A network analysis found that haplotypes collected from Wuhan were interior and had more mutational connections, both of which are consistent with the observation that the SARS-CoV-2 outbreak originated in China. CONCLUSION: SARS-CoV-2 might have cryptically circulated within humans for years before being discovered. Data from the early outbreak and hospital archives are needed to trace its evolutionary path and determine the critical steps required for effective spreading.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Disease Outbreaks , Genetic Variation , Genome, Viral , Pneumonia, Viral/epidemiology , COVID-19 , China/epidemiology , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL